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Self-similar problems of free-convective heat transfer on a vertical flat semiinfinite plate for high
Prandtl numbers and three types of thermal boundary conditions (an adiabatic surface, a constant
temperature, and a constant heat flux on the surface) are solved by the method of internal and exter-
nal expansions on the basis of the equations of a laminar boundary layer in the Boussinesq approxi-
mation. Asymptotic relations are found for the main characteristics. The results obtained are
compared with the data of other authors.

The processes of free-convective heat transfer on a vertical surface with different boundary condi-
tions, in particular, the laminar mode of motion of a liquid or a gas, have been given much consideration in
the technical literature [1−4]. However, here it should be noted that, despite the theoretical and practical value
of the results obtained and the numerous issues considered (the effect of the Prandtl number, variable force
of gravity, energy dissipation, stratification of the environment, compressibility of a flow, etc. on the heat
transfer), a number of quite significant and urgent engineering problems, associated first of all with obtaining
reliable computational formulas which could allow one to predict the dynamics of the studied process depend-
ing on the main parameters, still remain to be solved completely. Use of empirical relations [4], which are
characterized by a relatively high error, is ineffectual in most cases, and the results obtained based on them
should be assumed to be estimative. This is due to the fact that mathematical models of free-convective heat
transfer are a set of nonlinear interrelated partial differential equations, for integration of which there are no
analytical methods. Therefore, these problems are solved using numerical schemes based on explicit and im-
plicit finite-difference algorithms of calculation [5−8]. Under these conditions, investigations associated with
the improvement of approximate analytical methods are of obvious interest for science and technology.

In what follows, we present results of a complex study of fully developed free-convective flows on a
flat impermeable vertical semiinfinite plate for three types of thermal boundary conditions: an adiabatic sur-
face, a constant temperature, and a constant heat flux on the surface. The analysis is based on the equations
of a stationary laminar boundary layer in the Boussinesq approximation
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with the corresponding boundary conditions for the velocity and temperature fields. Approximate solutions of
boundary-value problems corresponding to a specific process of free-convective heat transfer on a vertical
surface with the variable functions u(x, y), v(x, y), and T(x, y) are constructed by the method of matched
asymptotic expansions [9].

Isothermal Surface. In this case, the boundary conditions for Eqs. (1) are
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y = 0 :   v = u = 0 ,   T = Tw ;   y → ∞ :   u → 0 ,   T → T∞ . (2)

As a result of substitution of expressions of the form

ψ = (gβ∆Twν
2)1

 ⁄ 4 F (η) x3 ⁄ 4 ,   η = 




gβ∆Tw

ν2





1 ⁄ 4

 x−1 ⁄ 4 y ,

u = (gβ∆Tw)
1 ⁄ 2 F′ (η) x1 ⁄ 2 ,   ∆T = ∆Tw H (η)

(3)

into system (1)−(2), we obtain

F ′′′  + 
3
4

 FF ′′ − 
1
2

 F ′
2

 + H = 0 ,   H ′′  + 
3
4

 Pr FH ′ = 0 ,

F (0) = 0 ,   F ′ (0) = 0 ,   F ′ (∞) = 0 ,   H (0) = 1 ,   H (∞) = 0 .
(4)

The following step is designed to simplify the analysis of the problem further by "splitting" a mathe-
matical model into submodels, i.e., the equations and conditions (4) which formulate the laws governing the
studied process are "split" into two systems of equations. In this case, the procedure of "splitting" is associ-
ated with the physical features of free convective heat transfer on a vertical isothermal surface: when Pr > 1,
heat transfer occurs in a thin thermal boundary layer of thickness δt D Pr−

1⁄4. Outside the thermal boundary
layer, there exists a viscous boundary layer of thickness δv D Pr

1⁄4 (δv
 ⁄ δt = Pr

1⁄2) where the flow does not
depend on buoyancy forces (H) and occurs due to the entrainment of a liquid from the environment by fric-
tion. Following [10−12], we introduce the internal and external variables below

F (η) = Pr−3 ⁄ 4 f (ζ) ,   ζ = Pr1 ⁄ 4 η ,   H (η) = h (ζ) ;

F (η) = γ Pr−1 ⁄ 4 G (z) ,   z = γ Pr−1 ⁄ 4 η ,   H (η) = 0 , (5)

and represent the functions f(ζ), h(ζ), and G(z) in the form of infinite series in powers of a small parameter
ε = Pr−

1⁄2. Substituting (3) into the system of equations (4) and collecting the terms with the same powers ε,
we obtain equations for determining the unknown functions fi, hi, and Gi:
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the external problem
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where the prime denotes differentiation with respect to the corresponding variable ζ or z. The boundary con-
ditions at ζ = ∞ and z = 0 are found from the condition of matching of the internal and external expansions:

   lim
ζ → ∞

   f0 + Pr−1 ⁄ 2f1 + Pr−1f2 + ...  = γ Pr1 ⁄ 2  lim
z → 0

  G0 + Pr−1 ⁄ 2G1 + Pr−1G2 + ...  ,

  lim
ζ → ∞

  h0 + Pr−1 ⁄ 2h1 + Pr−1h2 + ...  = 0 .
(8)

Constant Heat Flux on the Surface. The solution of system (1) must satisfy the boundary conditions
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Allowing for (9), we introduce new variables
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and rewrite the system of equations (1) and (9) in the form

F ′′′  + 
4
5

 FF ′′ − 
3
5

 F ′
2

 + H = 0 ,   H′′  + Pr 


4
5

 FH′ − 
1
5

 F′H

 = 0 ,

F (0) = 0 ,   F′ (0) = 0 ,   F′ (∞) = 0 ,   H′ (0) = − 1 ,   H (∞) = 0 .
(11)

Then, since in the case of boundary conditions of the second kind at large Prandtl numbers δt D Pr−
1⁄5 and

δv D Pr−
3⁄10, we represent, similarly to [13, 14], the sought functions F(η) and H(η) for the internal and ex-

ternal layers, respectively, as

F (η) = Pr−4 ⁄ 5f (ζ) ,   ζ = Pr1 ⁄ 5η ,   H (η) = Pr−1 ⁄ 5h (ζ) ;

F (η) = γ Pr−3 ⁄ 10G (z) ,   z = γ Pr−3 ⁄ 10η ,   H (η) = 0 .
(12)

As a result, we come to the necessity of integrating the following chain of interrelated ordinary differential
equations:

the internal problem
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4
5

 f0h0
′  − 

1
5

 f0
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 ′ (0) = 0 ,   h0
′  (0) = − 1 ,
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the external problem
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By virtue of (8), solutions of each preceding system of equations are the boundary conditions for the sub-
sequent system. Thus, using the field of the unknown functions, obtained in integration of the preceding
equations, as the boundary relations at ζ = ∞ and z = 0, we perform step-by-step "joining" of solutions. The
special properties of Eqs. (13) and (14), in contrast to (11), are that those equations do not contain the pa-
rameter Pr; therefore the functions fi(ζ), hi(ζ), and Gi(z) will not depend on Pr.

Adiabatic Surface. In this case, the boundary conditions are written as

y = 0 :   u = v = 0 ,   
∂T
∂y

 = 0 ;   y → ∞ :   u → 0 ,   T → T∞ . (15)

If we pass to the self-similar variables
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where

Q0 = ρCp ∫ 
0

∞

u∆Tdy = const ,

then determination of the unknown functions F(η) and H(η) is reduced to solution of the following bound-
ary-value problem:

F ′′′ + 
3
5

 FF ′′  − 
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5
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2

 + H = 0 ,   H′′  + Pr 
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 FH′ + 
3
5

 F′H

 = 0 ,

F (0) = 0 ,   F′ (0) = 0 ,   F′ (∞) = 0 ,   H′ (0) = 0 ,   H (∞) = 0 ,   ∫ 
0

∞

F′H dη = 1 .

(17)
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At large values of Pr the boundary layer on the vertical adiabatic surface can be subdivided into two regions:
one of thickness δt D Pr−

2⁄5, where the temperature difference tends to zero and the other of thickness δv D
Pr

1⁄10, where the velocity u → 0. Proceeding from the above, we introduce the following variables and func-
tions [15] for the internal and external layers, respectively:

F (η) = Pr−3 ⁄ 5f (ζ) ,   ζ = Pr2 ⁄ 5η ,   H (η) = Pr3
 ⁄ 5h (ζ) ;

F (η) = γ Pr−1 ⁄ 10G (z) ,   z = γ Pr−1 ⁄ 10η ,   H (η) = 0 .
(18)

By virtue of expressions (18) and the representation of the functions f(ζ), h(ζ), and G(z) by expan-
sions into power series ε, the system of equations (17) is rewritten as follows:

the internal problem
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the external problem
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Calculation Results and Their Analysis. To complete the formulation of the problem, we must
write the conditions of matching of the internal and external asymptotic expansions. For the zeroth approxi-
mation we write, in accordance with (8),

f0
 ′′  (∞) = 0 ,   h0 (∞) = 0 ,   G0 (0) = 0 ,   G0

′  (0) = 
f0
 ′ (∞)

γ 2  = 1   (γ 2 = f0
 ′ (∞)) . (21)

Similarly, we can find additional relations for higher-order approximations. Thus, having found the functions
fi(ζ), hi(ζ), and Gi(z), we can construct, by calculations, the profiles of velocity (temperature) at different Pr
numbers and calculate local Nusselt numbers, friction stress on the plate, and mass flow rate of the liquid per
second in the boundary layer:

an isothermal surface (Grx = gβ∆Twx3 ⁄ ν2)

Nux Grx
−1 ⁄ 4 = − Pr1 ⁄ 4 ∑ 

i=0

∞

hi
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ρν2  Grx
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∞
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 ′′  (0) εi ,   

m

µ
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−1 ⁄ 4 = Pr−1 ⁄ 4γ ∑ 
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∞

Gi (∞) ε
i ;
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a constant heat flux Grx
∗  = gβqwx4/(kν2) is specified on the surface
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∞
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∞
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(22)

an adiabatic surface (Grx = gβQ0x3/(ρCpν3))

∆Tw µCp

Q0
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1 ⁄ 5 = Pr3 ⁄ 5 ∑ 
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∞

hi (0) ε
i ,   

τwx2

ρν2  Grx
−3 ⁄ 5 = Pr1 ⁄ 5 ∑ 

i=0

∞

fi
 ′′ (0) εi ,   

m

µ
 Grx

−1 ⁄ 5 = Pr−1 ⁄ 10γ ∑ 

i=0

∞

Gi (∞) ε
i .

The functions f0, h0, and G0 were found numerically by the Runge−Kutta−Merson method by reducing
(6)−(7), (13)−(14), and (19)−(20) to the corresponding Cauchy problems. As is shown by the studies of [17],
in numerical integration of such equations there arise certain difficulties which are associated with the strong
dependence of the behavior of the sought functions on missing boundary conditions at ζ = 0: converging
solutions exist only within a very narrow range of arbitrarily specified quantities. This behavior of the system
of equations is known in computational mathematics as a "rigid problem." Therefore, in the numerical calcu-
lation it is desirable to have a technique which allows one to overcome the indicated difficulties. In this
work, this is done by finding the initial parameters in advance. The idea of this approach is to split the func-
tions f0 and h0 into n terms, with the solution corresponding to the case where f0 ′′ ′ = 0 is taken as the first
approximation. Then we construct two (three) terms of the series, using which we find formulas for determin-
ing the estimative values of f0 ′′(0) and h0(0) (or h0

′ (0)). The last procedure corresponds to summation of a
certain infinite number subsequence which enters into the main series. Similarily, we can write the expression
for γG0(∞) in explicit form. We note that this technique was tested in solving applied problems of jet hydro-
dynamics and proved to be reliable and efficient [18].

As a result, we obtained the following values (I for an isothermal surface, II for a constant heat flux
specified on the surface, and III for an adiabatic surface):

TABLE 1. Asymptotic Characteristics of Free-Convective Heat Transfer on a Vertical Impermeable Semiinfinite
Flat Surface

Thermal boundary
conditions −h0′ (0) h0(0) f0 ′′ (0) γG0(∞) Reference

0.5027451 1 1.1660423 − [10]

Isothermal surface 0.50274 1 1.16597 − [12]

0.5027454 1 1.1660422 1.2139858 Our data

1 1.58320 1.59505 − [13]

Constant heat flux
on the surface 1 1.583329 1.544903 − [14]

1 1.5840 − − [16]

1 1.5831587 1.5454761 1.2400671 Our data

Adiabatic surface 0 1.58145 1.18035 1.65591 [15]

0 0.5814385 1.1803498 1.6559780 Our data
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I.   f0
 ′′  (0) = 



10181

558π2




1 ⁄ 4

 ,   − h0
′  (0) = 



186

295π2




1 ⁄ 4

 ,   γG0 (∞) = 


2701

126π2




1 ⁄ 4

 ;

II.   f0
 ′′  (0) = 



11105

72π2 √π




1 ⁄ 5

 ,   h0 (0) = 


16528

95π2 √π




1 ⁄ 5

 ,   γG0 (∞) = 


18853

2000π4 ⁄ 3




3 ⁄ 10

 ;

III.   f0
 ′′  (0) = 



1002

25π2 √π




1 ⁄ 5

 ,   h0 (0) = 


93

80π2 √π




1 ⁄ 5

 ,   γG0 (∞) = 


618

25π4 ⁄ 3




3 ⁄ 10

 .

(23)

The data of the numerical integration are given in Table 1. The same table presents the results found
earlier [10, 12−16]. It appeared that the quantities calculated using the numerical scheme and relations (23)
virtually coincide: the maximum absolute error in calculating by formulas (23) is D 4⋅10−7. This indicates that
the potentialities of analytical approaches to the study of problems of free-convective heat transfer, despite
the constantly progressing development of computers and computational mathematics, are far from being ex-
hausted.

As for the accuracy of the constructed asymptotic solutions, if we take a 5% difference in the results
of calculation of, for example, the mass flow rate of a liquid per second in the boundary layer as the crite-
rion, we can say that agreement with the data of the numerical solution of Eqs. (4), (11), and (17) [1, 4, 19]
begins at Pr C10 for the boundary conditions (9) and (15) and at Pr C 5 for relations (2). The latter indicates
that for the problems considered in the present work, obtaining two (three) approximations based on the the-
ory of matched asymptotic expansions, which is equivalent to retention of the first two (three) terms of the
series in (22), makes it possible to develop a simple and practically convenient mathematical apparatus for
studying the characteristic features and laws governing free-convective heat transfer. Results found within the
framework of asymptotic models should be considered as a substantial addition to the information obtained
on the basis of numerical integration. The method of matched asymptotic expansions has a number of advan-
tages over the numerical techniques of solution of the boundary-value problems (4), (11), and (17). First, the
method "copes" better with the description of hydrodynamics and heat transfer at large Pr numbers, and sec-
ond, the algorithmic structure of the method is substantially simpler than the corresponding structures of nu-
merical schemes, which leads to significant savings in the time needed to obtain the desired information. And
finally, the fundamental possibility of determining rather accurately the character of the behavior of the solu-
tions of the studied problem in advance with variation of the operating parameters allows one to develop a
strategy of numerical analysis which provides a significant decrease in the total number of iterative solutions.

NOTATION

u and v, longitudinal and transverse components of the velocity; x and y, longitudinal and transverse
coordinates; T, temperature; Tw and T∞, temperatures of the wall and the environment; q, heat flux; k, thermal
conductivity; ν, kinematic viscosity; µ, dynamic viscosity; ∆T = T − T∞, excess temperature; ρ, density; Cp,
heat capacity at constant pressure; β, coefficient of volumetric thermal expansion; m, mass flow rate per sec-
ond; τw, friction stress on the wall; δt and δv, thickness of the thermal and viscous boundary layers; γ, nor-
malization factor; Grx and Nux, local Grashof and Nusselt numbers; Pr, Prandtl number; ψ, stream function.
Subscripts: w, wall; t, thermal; v, viscous.
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